
Exploring Volume Rendering with Path Tracing

Scott Davis, Xiaoqian Jiang, Greg Nichols, James Cremer∗

Department of Computer Science, University of Iowa

1 Introduction

Advanced computer graphics rendering techniques have the po-
tential to greatly enhance the understanding of complex medical
datasets, such as MRI and CT scan data.

Traditional volume rendering techniques relies on simple lighting
and illumination techniques including: 1) isosurface extraction and
2) direct volume rendering by ray casting. The first technique works
poorly when surfaces aren’t the primary element of interest. Basic
ray casting doesn’t suffer from this limitation but also doesn’t in-
clude information such as shadows that enhance spatial understand-
ing. Ray tracing techniques handle shadows but still lack proper
consideration of global illumination. So, we want to do better.

Our aim is to reveal subtle details of volume data by introducing
global illumination techniques that account for indirect illumination
as well as shadows and direct illumination.

2 Exposure

Our technique approximates the rendering by Monte Carlo Path
Tracing at the voxel level. See Figure 1 for an overview of our
technique.

Figure 1: Overview of our method

Some major components of our method are:

2.1 Diffuse surface reflection

Ray tracing produces photorealism for shiny objects, but it does
not handle more diffuse objects where color bleeding occurs. This
happens mostly on diffuse surfaces from light bouncing off nearby

∗e-mail: {scodavis|xjia|gbnichol|cremer}@cs.uiowa.edu

surfaces. In step 6 of our pipeline, we approximate diffuse object
reflection using Monte Carlo Path Tracing by sending out rays ran-
domly about the hemisphere around the normal

2.2 Efficient voxel traversal

Monte Carlo Path Tracing elegantly models reflection, refraction
and shadows with one major drawback: computation expense. The
bottleneck here is the ray object intersection, which takes up to to
95% of the rendering time. We adopted an efficient voxel traversal
algorithm to speed up the process. Our 3D Bresenham algorithm
is a straightforward extension of the DDA line algorithm. The tra-
versal algorithm breaks the ray into intervals of t, each of which
spans one voxel. A ray starts from the origin and visits each of
these voxels in interval order.

2.3 Ray isosurface intersection for trilinear boxes

Step 10 of our pipeline consists of two phases. We analytically
compute the normal at each intersection and shade the resulting in-
tersection point where an isosurface exists. Computation only in-
volves ray-isosurface intersection, no explicit surface is computed.

3 Results

We implemented our technique in C++ on a Pentium 4, 1.3 GHz
CPU machine with 768 MB of RAM. Our dataset is the 64x64x64
fuel injection simulation from http://www.volren.org/. We imple-
mented several techniques, including marching cubes, ray casting
and path tracing to compare the results and the rendering times.

Marching Cube Ray casting Path tracing

Figure 2: Comparison of different techniques

To our ray tracer, we added path tracing and in Figure 2 is an ex-
ample of our output. We were able to render our path traced image
in 92 seconds using 1 sample per pixel and 651 seconds using 9
samples per pixel to a 200x200 image.

4 Conclusion

Our results provide compelling initial evidence that advanced ren-
dering and illumination techniques can add greatly to medical vi-
sualization, and our technique provides one promising direction for
future research.

